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ABSTRACT

In this paper, we examine main properties of the Constant Proportion Portfolio
Insurance (CPPI) strategy, when trading in continuous-time is not allowed. We focus
instead on stochastic-time rebalancing. We prove that investor's tolerance determines
crucially portfolio performance, in particular when taking transaction costs into account.
We illustrate this feature in the geometric Brownian case and we provide some numerical
insights in this framework.
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I. INTRODUCTION

Portfolio insurance allows investors to recover, at maturity, a given percentage of their
initial investment, in particular when markets are bearish. One of the main standard
portfolio insurance methods is the Constant Proportion Portfolio Insurance (CPPI). It
has been introduced by Perold (1986), and further developed by Black and Jones (1987)
for equity instruments and Black and Perold (1992). This dynamic strategy consists in
setting a floor equal to the lowest acceptable value of the portfolio then allocating an
amount to the risky asset which is determined as follows: this amount (called the
exposure) is equal to the product of the cushion (defined as the excess of the portfolio
value over the floor) and of a predetermined multiple. Both the floor and the multiple
depend on the investor's risk tolerance. Usually, results about CPPI method are
established under the assumption of continuous-time rebalancing. In this framework, the
investor can modify his portfolio at any time. For example, if the cushion approaches
zero, he reduces his exposure drastically, which keeps portfolio value from falling below
the floor.

In this paper, we take account of the impossibility of trading truly in
continuous-time. We focus on stochastic-time rebalancing. We prove that the impact of
investor's tolerance is important, in particular when transaction costs occur. In Section 2,
basic properties about CPPI method are recalled. In Section 3, we consider the case of
stochastic time rebalancing with a deterministic target multiple. The investor rebalances
his portfolio as soon as the ratio "exposure/cushion" reaches a lower or an upper bound.
These bounds can be chosen equal to percentages of a fixed multiple (the target multiple).
We provide explicit (or quasi-explicit) formulas for the portfolio values and probability
distributions of rebalancing times, when asset price dynamics are driven by a Geometric
Brownian motion. In Section 4, we illustrate main properties of such portfolio strategy.
Simulations also allow the comparison between these different methods by means of the
first four moments and some quantiles.1

I. CPPI WITH CONTINUOUS-TIME REBALANCING

A. The Standard Financial Model

The portfolio manager is assumed to invest in two basic assets: a money market account,
denoted by B, and a portfolio of traded assets such as a composite index, denoted by S.
The period of time considered is [0,T]. The strategies are self-financing. The value of the
riskless asset B evolves according to:

,rdtBdB tt 

where r is the deterministic interest rate. The dynamics of the risky asset price S are given
by a diffusion process:2

    ttttt dWS,tdtS,tSdS   ,

where W is a standard Brownian motion.
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B. The Standard CPPI Method

This strategy consists in managing a dynamic portfolio so that its value is above a floor P
at any time t of the management period. The value of the floor indicates the dynamic
insured amount. It is assumed to evolve according to:

rdtPdP tt 

Obviously, the initial floor P0 is smaller than the initial portfolio value V0. The difference
(V0- P0) is called the cushion. It is denoted by C0. Its value Ct at any time t in [0,T] is
given by:

ttt PVC 

Denote et as the exposure. It is the total amount invested in the risky asset. The
standard CPPI method consists in letting et=mCt where m is a constant called the
multiple. The interesting case is when m>1, that is, when the portfolio profile is convex.
Thus, the CPPI method is parametrized by P0 and m. Note that the multiple must not be
too high as shown for example in Prigent (2001a) or in Bertrand and Prigent (2002). The
cushion value at any time is given by:
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Consequently, the guarantee is satisfied since the cushion is always non negative.3 When
μ and σ are constant, the cushion value is given by:
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In this case, the cushion value and the portfolio value are independent of the risky asset
paths. The insurance is perfect. Their probability distributions are lognormal (up to a
translation for the portfolio value) with a volatility equal to mσ. The instantaneous mean
rate of return is equal to r+m(μ-r). The multiple m can be viewed as a weight in the
volatility and in the excess of return (μ-r). The value Vt of the portfolio is given by:
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Then, the portfolio value has mean and variance, which are respectively given by:
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II. CPPI WITH STOCHASTIC-TIME REBALANCING

In previous section, the investor is assumed to continuously rebalance his portfolio. In
practice, this rebalancing cannot be made at any time of the management period and the
impact of the market timing has to be analyzed, in particular when there are transaction
costs. One of the standard method is to fix a target multiple m and to rebalance the
portfolio as soon as the value of the ratio "exposure/cushion" is smaller than m(1-τ) or
higher than m(1+τ). This method implies to rebalance the portfolio along a sequence of
increasing random times (Tn)n.

4 In what follows, we examine the problem when the target
multiple is deterministic.

A. The Model

When the cushion rises, the exposure can reach the maximum level that the investor
wants to invest or the minimum level that he requires. While the exposure lies between
these two bounds, he does not trade. Otherwise, for example when market fluctuations
are significant, he may rebalance his portfolio in order to keep the ratio exposure/cushion
within a given set of values. For this purpose, he can define a tolerance to market
fluctuations which determines the two bounds on percentages of variations. Introduce the
lower bound m and the upper bound m on the multiple m. The investor begins by
investing a total amount V0 and by setting a given initial floor P0. The share θ0

S invested
on the underlying S and the share θ0

B invested on the riskless asset B are given by:

  000
S
0 S/PVm  and    .B/PVmV 0000

B
0 

The portfolio value 
1nTV (before rebalancing) at each time Tn+1 is equal to:
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. Thus, we have also:
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However, the goal of the CPPI strategy is to keep an amount
1nTe


of risk exposure

that is proportional to the cushion:
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This latter condition allows the determination of the quantities 
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given by:

1n1n1n1n1n
T

S
TT

B
TT

SBV


  .



INTERNATIONAL JOURNAL OF BUSINESS, 15(3), 2010 247

We suppose that there exist transaction costs which are proportional to the risky
amount variation (the transaction cost rate is denoted by γ). We assume that these costs 

are null at time T0. At each rebalancing time Tn+1, the portfolio value 
1nTV is reduced by

the amount of transaction costs equal to:
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Therefore, the portfolio value 
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Proposition 1. The quantity 
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invested on the risky asset, after rebalancing at time

Tn+1, is determined from a buy/sell condition. We obtain:
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Proposition 2. (Characterization of the buy/sell condition) Assume that, at time Tn+1,

we have: ,1m  m/10  and the cushion value satisfies: ,0C
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We now determine the probability distribution of the rebalancing times.

B. Rebalancing Times

We begin by determining the first rebalancing time. Since usually the amount 0
B
0 B

invested on the riskless asset is smaller than the initial floor P0, then the rebalancing
condition is determined as follows. At time t = 0, we have:
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Denote T1 as the first rebalancing time. If t < T1, then the portfolio value, the cushion
value, and the exposure are respectively equal to:

,ePVC,SBV rt
0ttt
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0t

B
0t  and .Se t
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The condition that determines the rebalancing time corresponds to the first time T1 at

which the ratio exposure/cushion is lower than a lower bound m or higher than an upper
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m
C

e
m

t

t  .

This is equivalent to:

    ,mePSB/Sm rt
0t

S
0t

B
0t

S
0 

which also means:

 
 

 
 

.
1m

BPm
eS

1m

BPm
S
0

0
B
00rt

tS
0

0
B
00








 

Setting Xt=ln(St/S0)-rt, we deduce that there exist two constants A and B such that T1 is
equal to the first time at which condition A ≤ Xt ≤ B is no longer satisfied.

Proposition 3. (First rebalancing time) The first rebalancing time corresponds to the

first time at which the process X defined by:   rtS/SlnX 0tt  escapes from the

corridor [A,B] where A and B are two constants defined from the equivalence:
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Suppose that both the lower and the upper bounds on the multiple are determined as
follows:
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where m denotes the target multiple and  denotes the investor’s tolerance with respect
to the target multiple. In that case, the two constants A and B are only functions of the
target multiple m and the rebalancing tolerance τ. They are respectively given by:
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Consider now the Geometric Brownian case, where the asset price S is given by:

).Wt))2/1(exp((SS t
2

0t 

Thus, the process X is a Brownian motion with drift, defined by:

.Wt)2/1r(X t
2

t 

The conditional distribution of time rebalancing is characterized by the property that the
Brownian motion with drift goes beyond the corridor [A,B]. This probability can be
deduced from the trivariate distribution of the running maximum, minimum and terminal
value of the Brownian motion (See Revuz and Yor, 1994) after an appropriate change of
probability to eliminate the drift.5 Recall that the density of this joint law in the presence
of a constant drift ρ is defined for all values of x in [A,B] by:
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where  is the probability density function (pdf) of the centered and reduced Gaussian
distribution and N is its cumulative distribution function (cdf). If A < 0 and B > 0, then
the distribution of the first passage time T1 is given by:
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III. NUMERICAL ILLUSTRATIONS

In this section, first we examine some properties of the portfolio returns, and then we
analyze the distributions of the rebalancing times. Our numerical base case is as follows:

  %.95p%,10%,20,year1T%,3r 

Table 1 provides the first four moments of the portfolio return. We indicate the
expectation and standard deviation of the return, and the skewness and kurtosis of the log
return (to better illustrate the comparison with the Gaussian distribution). We analyze
how these moments depend on both the tolerance and the transaction cost rate.
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Table 1
First four moments of returns

µ=10% and m=6 µ=10% and m=4

Sensitivities of Mean portfolio return (%)

τ\γ (%) 0 1 2 3 4 0 1 2 3 4

0 7,092 -4,900 -4,990 -5,000 -5,000 5,598 -3,440 -4,770 -4 ,960 -4,990

5 7,087 -0,820 -3,590 -4,540 -4 ,860 5,590 3,109 1,196 -0,280 -1,440

10 7 ,071 1,936 -1,050 -2,810 -3,830 5,581 4,246 3,072 2,031 1,103

15 7,014 3,324 0,728 -1,110 -2,430 5,539 4,649 3,829 3,068 2,357

20 6,917 4 ,109 1,928 0,211 -1,150 5 ,519 4,879 4,275 3,701 3,150

25 6,867 4,674 2,858 1,331 0,033 5,460 4,975 4,511 4,063 3,627

30 6,799 5,064 3,562 2,242 1,065 5,403 5,033 4,674 4,324 3,979

35 6,693 5,310 4,072 2,945 1,905 5,298 5,007 4,722 4,441 4,161

40 6,554 5,452 4,440 3,495 2,598 5,253 5,033 4,814 4 ,596 4,377

Standard deviation of portfolio return

0 0,202 0,002 0,000 0,000 0,000 0,098 0,014 0,002 0,000 0,000

5 0,202 0,071 0,025 0,008 0,003 0,098 0,075 0,058 0,044 0,034

10 0,199 0,116 0,067 0,039 0,022 0,096 0,084 0,074 0,065 0,057

15 0,193 0,134 0,093 0,065 0,045 0,094 0,086 0,079 0,073 0,067

20 0,187 0,144 0,111 0,086 0,067 0,092 0,087 0,082 0,077 0,073

25 0,181 0,148 0,122 0,101 0,084 0,089 0,085 0,081 0,078 0,075

30 0,173 0,149 0,128 0,112 0,098 0,085 0,082 0,079 0,077 0,075

35 0,163 0,144 0,128 0,115 0,104 0,081 0,079 0,077 0,075 0,073

40 0,153 0,139 0,127 0,117 0 ,108 0,078 0,076 0,074 0,073 0,072

Skewness of portfolio logreturn

0 3,452 6,751 7,253 7,816 8,591 2,302 2,976 3,197 3,294 3,387

5 3,455 4,749 6,257 7,892 9,657 2,290 2,415 2,541 2,669 2,803

10 3,421 4,047 4,761 5,587 6,560 2,246 2,294 2,347 2,407 2,475

15 3,316 3,648 4,016 4 ,447 4,983 2,197 2,219 2,247 2,282 2,326

20 3,277 3,527 3,823 4,196 4,690 2,114 2,113 2 ,118 2,129 2,146

25 3,181 3,346 3,540 3,781 4,087 2,024 2,010 2,001 1,996 1,996

30 3,079 3,192 3,333 3,514 3,751 1 ,885 1,856 1,830 1,808 1,790

35 2,911 2,967 3,042 3,143 3 ,279 1,765 1,729 1,696 1,666 1,639

40 2,805 2,832 2,872 2,931 3,012 1,626 1,585 1,547 1,511 1,479

Kurtosis of portfolio logreturn

0 21,29 85,23 98,960 114,80 137,70 11,55 18 ,61 21,53 22,93 24,27

5 21,43 41,25 75,229 123,80 186,20 11,44 12,54 13,71 14,97 16,36

10 21,03 29,33 40,905 56,95 79,31 11,11 11,52 11,97 12,49 13,11

15 19,82 23,87 28,995 35,84 45,66 10,79 11,00 11,25 11,56 11,95

20 19,64 22,77 26,912 32 ,71 41,42 10,18 10,19 10,23 10 ,31 10,43

25 18,66 20,61 23,063 26,25 30,58 9,623 9,541 9,481 9,445 9,436

30 17,67 18,97 20,625 22,79 25,73 8,614 8,412 8,228 8,064 7,918

35 16,13 16,77 17,584 18,65 20,07 7,929 7,702 7,489 7,290 7,105

40 15,34 15,62 15,999 16,50 17,17 7,210 6,982 6,766 6,561 6,366
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We note that, when there is no transaction cost, the expected return is decreasing
w.r.t. the tolerance and increasing w.r.t. the multiple. For a transaction cost rate equal to
or higher than 1%, it is the converse. The skewness of logreturn is always positive and the
values of the kurtosis show that the logreturn distribution is not Gaussian (they are all
higher than 3).

In Table 1, both skewness and kurtosis are increasing w.r.t. the multiple and are
decreasing w.r.t. tolerance. We compare now the returns of both the continuous-time

rebalancing portfolio value ctr
TV (which corresponds to %0 ) and the stochastic-time

rebalancing portfolio value str
TV . We examine the distribution of the ratio str

T
ctr
T V/V . Note

that its cdf depends on γ and m:
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Figures 1(c,d) show that there exists a stochastic dominance at the first order

between portfolios values ctr
TV and str

TV (with transaction costs), and also between

ctr
TTC and str

TTC .

Figure 1
Portfolio values and transaction costs
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In particular, we search for the quantile at the level (1/2) and the value of

  1F m, . We note that the probability that str
TV is higher than ctr

TV is about 100% and

the range of ratio str
T

ctr
T V/V is in [0.6;1]. This proves that we must introduce portfolio

rebalancing according to the tolerance level. Additionally, the ratio str
T

ctr
T TC/TC of the

cumulative amounts of transaction costs is always higher than 160%. We find also that
str
TTC is smaller than 5% of the initial investment V0 with a probability equal to 92.36%

(see Figure 1 (d)), whereas, for ctr
TTC , this probability is equal to 23%. Note that ctr

TTC

can reach 50% of the initial investment V0. We illustrate now in Figure 2 the impact of
the multiple on rebalancing times and durations (pdf denoted by f and cdf denoted by F).

Figure 2
Stochastic time and duration probability distributions
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For any fixed tolerance rate τ, the higher the multiple m, the lower the rebalancing
times and durations, since the corridor [A,B] is decreasing with respect to the multiple m.
Note that the duration associated to the multiple m1 stochastically dominates any
duration associated to the multiple m2, as soon as m1 < m2. For example, for m1=6, the
probability to rebalance during one week is about 60% whereas, for m2=10, this
probability is about 85%. The duration associated to a tolerance rate 1 stochastically

dominates any duration associated to a tolerance rate 2 , as soon as 21  . For example,

for %101  , the probability to rebalance during one month is about 100% whereas,

for %152  , this happens approximately for two months.
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IV. CONCLUSION

In this paper, we have examined the CPPI method when portfolio is rebalanced according
to investor’s tolerance with respect to the target multiple. This strategy is used by
practitioners to limit exposure and to reduce global transaction costs. Using various
criteria, we have shown that tolerance to the target multiple must be carefully chosen
according to the transaction cost level, since this latter one penalizes portfolio
performance. We have also compared this stochastic time rebalancing CPPI strategy with
the standard one (tolerance equal to zero), when transaction costs occur. Clearly, it
dominates the standard strategy. As a by-product, we have provided quasi explicit
formula for cumulative distribution function of rebalancing times.

ENDNOTES

1. For more details about proofs of propositions, see Mkaouar (2009).
2. The functions μ(.), and σ(.) satisfy the usual conditions to guarantee the existence,

uniqueness and positivity of the solution of this stochastic differential equation.
3. When the risky asset S has jumps, which are greater than a non positive constant d,

then condition 0 ≤ m ≤ -1/d implies positivity of the cushion. For example, if d is
equal to -10%, then taking m ≤ 10 allows portfolio to be guaranteed.

4. See Prigent (2001b) for results of option pricing, when such kind of times (Tn)n are
considered.

5. See also Geman and Yor (1994).
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