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ABSTRACT

In this paper, we examine main properties of the Constant Proportion Portfolio
Insurance (CPPI) strategy, when trading in continuous-time is not allowed. We focus
instead on stochastic-time rebalancing. We prove that investor's tolerance determines
crucialy portfolio performance, in particular when taking transaction costs into account.
Weillustrate this feature in the geometric Brownian case and we provide some numerical
insightsin this framework.
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[ INTRODUCTION

Portfolio insurance alows investors to recover, at maturity, a given percentage of their
initial investment, in particular when markets are bearish. One of the main standard
portfolio insurance methods is the Constant Proportion Portfolio Insurance (CPPI). It
has been introduced by Perold (1986), and further developed by Black and Jones (1987)
for equity instruments and Black and Perold (1992). This dynamic strategy consists in
setting a floor equal to the lowest acceptable value of the portfolio then allocating an
amount to the risky asset which is determined as follows. this amount (called the
exposure) is equal to the product of the cushion (defined as the excess of the portfolio
value over the floor) and of a predetermined multiple. Both the floor and the multiple
depend on the investor's risk tolerance. Usualy, results about CPPI method are
established under the assumption of continuous-time rebalancing. In this framework, the
investor can modify his portfolio at any time. For example, if the cushion approaches
zero, he reduces his exposure drastically, which keeps portfolio value from falling below
the floor.

In this paper, we take account of the impossibility of trading truly in
continuous-time. We focus on stochastic-time rebalancing. We prove that the impact of
investor's tolerance isimportant, in particular when transaction costs occur. In Section 2,
basic properties about CPPI method are recalled. In Section 3, we consider the case of
stochastic time rebal ancing with a deterministic target multiple. The investor rebalances
his portfolio as soon as the ratio "exposure/cushion” reaches alower or an upper bound.
These bounds can be chosen equal to percentages of afixed multiple (thetarget multiple).
We provide explicit (or quasi-explicit) formulas for the portfolio values and probability
distributions of rebalancing times, when asset price dynamics are driven by a Geometric
Brownian mation. In Section 4, we illustrate main properties of such portfolio strategy.
Simulations also allow the comparison between these different methods by means of the
first four moments and some quantiles.*

l. CPPI WITH CONTINUOUS-TIME REBALANCING
A.  The Standard Financial M odel
The portfolio manager is assumed to invest in two basic assets: a money market account,
denoted by B, and a portfolio of traded assets such as a composite index, denoted by S.
The period of time considered is[0,T]. The strategies are self-financing. The value of the
riskless asset B evolves according to:

dBt = Btrdt,

wherer isthe deterministic interest rate. The dynamics of the risky asset price Sare given
by adiffusion process:?

dS; =S;_[u(t, S Jatt + o(t, S Jaw, |,

where W is a standard Brownian motion.
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B. The Standard CPPI M ethod

This strategy consistsin managing a dynamic portfolio so that its valueis above afloor P
at any time t of the management period. The value of the floor indicates the dynamic
insured amount. It is assumed to evolve according to:

dPt = Pt I’dt

Obviously, theinitial floor Pyissmaller than the initial portfolio value V. The difference
(Vo Py) is called the cushion. It is denoted by C,. Its value C; at any time t in [0,T] is
given by:

Ci=Vi-R

Denote € as the exposure. It is the total amount invested in the risky asset. The
standard CPPI method consists in letting e=mC; where m is a constant caled the
multiple. The interesting case is when m>1, that is, when the portfolio profile is convex.
Thus, the CPPI method is parametrized by Pyand m. Note that the multiple must not be
too high as shown for example in Prigent (2001a) or in Bertrand and Prigent (2002). The
cushion value at any timeis given by:

t

C;=Cy exp{(l— m)rt + m{f(p ~(1/2)mo?(s, S )}15 + :j)c(s, S )dwsﬂ

0

Consequently, the guaranteeis satisfied since the cushion is always non negative.® When
p and ¢ are constant, the cushion valueis given by:

C, = Coecht+[r+m(p—r)—(m202)/2]t with Cy = Vg - P

In this case, the cushion value and the portfolio value are independent of the risky asset
paths. The insurance is perfect. Their probability distributions are lognormal (up to a
translation for the portfolio value) with avolatility equal to me. The instantaneous mean
rate of return is equal to r+m(u-r). The multiple m can be viewed as a weight in the
volatility and in the excess of return (u-r). The value V, of the portfolio is given by:

Vi = Vi(m,S;) = Ry.e™ + ;. S, where
oy = (Co / (Som))exp[ﬁt]’
and

B=|r— m(r - 2)02)— m2(02 / 2)]
Then, the portfolio value has mean and variance, which are respectively given by:
E[Vy]= (Vo — RoJel M-k 4 et

Var[Vy]=(Vo - p0)2e2[r+m(ufr>1t[emzczt _1}
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. CPPI WITH STOCHASTIC-TIME REBALANCING

In previous section, the investor is assumed to continuoudly rebalance his portfolio. In
practice, this rebalancing cannot be made at any time of the management period and the
impact of the market timing has to be analyzed, in particular when there are transaction
costs. One of the standard method is to fix a target multiple m and to rebalance the
portfolio as soon as the value of the ratio "exposure/cushion” is smaller than m(1-t) or
higher than m(1+t). This method implies to rebalance the portfolio along a sequence of
increasing random times (T,,),.* In what follows, we examine the problem when the target
multiple is deterministic.

A. TheModel

When the cushion rises, the exposure can reach the maximum level that the investor
wants to invest or the minimum level that he requires. While the exposure lies between
these two bounds, he does not trade. Otherwise, for example when market fluctuations
are significant, he may rebalance his portfolio in order to keep the ratio exposure/cushion
within a given set of values. For this purpose, he can define a tolerance to market
fluctuations which determines the two bounds on percentages of variations. Introduce the
lower bound m and the upper bound m on the multiple m. The investor begins by
investing a total amount V, and by setting a given initial floor Py. The share 0,° invested
on the underlying S and the share 0,° invested on the riskless asset B are given by:

05 =m(Vy—Py)/Sp and 6§ = (Vo —m(Vg —Py))/ Bg.
The portfolio value VT, (before rebalancing) at each time T, is equal to:

— S+
VTn +1 T, ST

_ nB+
- eTn BTn+l +0

na "

Notethat 68+ =08~ and6S* =65~ . Thus, we have also:
Tn Tn+1 Tn Tn+1

N - S
VTn+1 - eTml BTn+1 + eTmlSTm-l ’

However, the goal of the CPPI strategy isto keep an amount er ., of risk exposure
that is proportional to the cushion:

+
Tn+1

_PTn+1)'

_ + ; + [\t
€ _mCT ) with CTn+1 _(VT

n+! n+1

Thislatter condition allows the determination of the quantities e? and 6?’ to invest
n+1

n+l

during the period ] T 41, Theo . The portfolio value VT+ . at timeT,., (after rebalancing) is
given by:

+ _ B+ S+
VTn+l B 9Tn+l BT”+1 * eTrwrls-r”*'l )
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We suppose that there exist transaction costs which are proportional to the risky
amount variation (the transaction cost rate is denoted by y). We assume that these costs

arenull at time T,. At each rebalancing time T4, the portfolio value V1,4 isreduced by
the amount of transaction costs equal to:

S+ S—
Y eTn+1 eTn+1 S

Tt

Therefore, the portfolio value VT+ . (after rebalancing) is given by:

- S+ S-
Vi o=V - 7|6 -0 S
Tha Thaa 7 Tha Tha

T

Proposition 1. The quantity e? ) invested on the risky asset, after rebalancing at time
N+
The1, IS determined from a buy/sell condition. We obtain:

m(Vr  +v03'St  —P_ )
. nS S— S + T + Ths
If we buy: BT:+1 >67 then oSt = n n_ Ml Tna”

n+l (1+,Ym)ST )

— S+
<07 then oS* - VT 107, 510 ~Fr, )
n+l

n+l (1_ ’Ym)STHl

Proposition 2. (Characterization of the buy/sell condition) Assumethat, at time T4,
we have: m>1, 0<y <1/ mand the cushion value satisfies: C* > 0, Then, we deduce

If we buy: e?l

the following equivalence:

S- P ASTrwrl > ABTrwrl ,

i St
Buy condition: OTM > GTM s B,
n n

i* P ASTml < ABTn+1
n+l ST BT
ASTnJrl _ ABTml

Sell condition: 9?

<0
n+l

n n

. nS+ _ S
No buy/sell: OTM = GTM s B,

We now determine the probability distribution of the rebalancing times.
B. Rebalancing Times

We begin by determining the first rebalancing time. Since usually the amount GEBO

invested on the riskless asset is smaller than the initial floor Py, then the rebalancing
condition is determined as follows. At timet = 0, we have:

S8 = (Vg — Py )05 = m(Vo —Py)/Sp and 65Bg +65Sg = Vo.
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Denote T, as the first rebalancing time. If t < T4, then the portfolio value, the cushion
value, and the exposure are respectively equal to:

Vt = BgBt + Bgst,ct = Vt - Poert, and et = egst
The condition that determines the rebalancing time corresponds to the first time T, at

which the ratio exposure/cushion islower than alower bound m or higher than an upper

bound m :
&
of

m<—t<m.

Thisisequivalent to:
m< (egst )/(e0 B, +05S; — Poe" ) <m,

which also means:

Setting X=In(S/Sg)-rt, we deduce that there exist two constants A and B such that T, is
equal to the first time at which condition A < X; < B isno longer satisfied.

Proposition 3. (First rebalancing time) The first rebalancing time corresponds to the
first time at which the process X defined by: X, =In(S; /Sg)- rt escapes from the

corridor [A,B] where A and B are two constants defined from the equivalence:

m<dt cmeA<X, <B.
Ci

Suppose that both the lower and the upper bounds on the multiple are determined as
follows:

m=m(l-t)andm=m(1+1),

where m denotes the target multiple and 7 denotes the investor’ s tolerance with respect
to the target multiple. In that case, the two constants A and B are only functions of the
target multiple m and the rebalancing tolerance t. They are respectively given by:

N L{im} i om-1

m-1m(Vq - Rp) mo_1

1+1

0GB m-1
B(z,m)=Ln M Fo=%Bo |_, m-1
[m 1m(Vo—Po) m——1

1-<
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Consider now the Geometric Brownian case, where the asset price Sis given by:
S¢ =Spexp((1 — (1/ 2)52)t + GW,).
Thus, the process X is a Brownian motion with drift, defined by:
X = (u—r—1/262)t + cW,.

The conditional distribution of time rebalancing is characterized by the property that the
Brownian motion with drift goes beyond the corridor [A,B]. This probability can be
deduced from the trivariate distribution of the running maximum, minimum and terminal
value of the Brownian motion (See Revuz and Y or, 1994) after an appropriate change of
probability to eliminate the drift.> Recall that the density of thisjoint law in the presence
of a constant drift p is defined for al values of x in[A,B] by:

g(x, A, B)=exp[(px/6%) - (p*t/(26%))]
netoo| 1 x—2n(B—A)J_ (x—Zn(B—ZA)J
XZ nw(GﬁJ¢( Gﬁ ¢ G\/? 1

where ¢ is the probability density function (pdf) of the centered and reduced Gaussian
distribution and N is its cumulative distribution function (cdf). If A <0and B > 0, then
the distribution of the first passage time T, is given by:

P <t]=1- P{Maxxs <B,Min X ZA}

<t s<t
with
P[Maxe< (X < B,Ming X > A=

Jrgez”p(BA),gz{N(B—pt—Zn(B—A)j_ N(A —pt—2n(B—A)ﬂ

N=—o0 ot G\/f

S IPYNP. B—pt—2n(B—A)—2AJ [A—pt—Zn(B—A)—ZA]
- € N -N

n=z—:°° { [ G\E G\/?

1. NUMERICAL ILLUSTRATIONS

In this section, first we examine some properties of the portfolio returns, and then we
analyze the distributions of the rebalancing times. Our numerical base caseis asfollows:

r=3%,T =1(year),c = 20%, 1 = 10%, p = 95%.

Table 1 provides the first four moments of the portfolio return. We indicate the
expectation and standard deviation of the return, and the skewness and kurtosis of the log
return (to better illustrate the comparison with the Gaussian distribution). We analyze
how these moments depend on both the tolerance and the transaction cost rate.
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Tablel
First four moments of returns
p=10% and m=6 p=10% and m=4

Sensitivities of Mean portfolio return (%)
t\y (%) 0 1 2 3 4 0 1 2 3 4
0 7,092 -4,900 -4,990 -5,000 -5000| 5598 -3,440 -4,770 -4,960 -4,990
5 7,087 -0,820 -3,590 -4,540 -4,860| 5590 3,109 1,196 -0,280 -1,440
10 7,071 1,936 -1,050 -2,810 -3,830| 5581 4,246 3,072 2031 1,103
15 7,014 3324 0,728 -1,110 -2,430| 5539 4,649 3829 3,068 2357
20 6,917 4,109 1,928 0,211 -1,150| 5,519 4,879 4,275 3701 3,150
25 6,867 4,674 2,858 1,331 0,033| 5460 4,975 4511 4,063 3,627
30 6,799 5064 3562 2242 1,065| 5403 5033 4,674 4,324 3,979
35 6,693 5310 4,072 2945 1,905| 5298 5007 4,722 4441 4,161
40 6,554 5452 4440 3495 2598| 5253 5033 4,814 4,59 4,377

Standard deviation of portfolio return
0 0,202 0,002 0,000 0,000 0,000 0,098 0,014 0,002 0,000 0,000
5 0,202 0,071 0,025 0,008 0,003 0,098 0,075 0,058 0,044 0,034
10 0,199 0,116 0,067 0,039 0,022| 0,096 0,084 0,074 0,065 0,057
15 0,193 0,134 0,093 0,065 0,045| 0,094 0,086 0,079 0,073 0,067
20 0,187 0,44 0111 0,086 0,067| 0,092 0,087 0,082 0,077 0,073
25 0,181 0,248 0,122 0,001 0,084| 0,089 0,085 0,081 0,078 0,075
30 0,173 0,249 0,128 0,112 0,098 0,085 0,082 0,079 0,077 0,075
35 0,163 0,244 0,128 0,115 0,204| 0,081 0,079 0,077 0,075 0,073
40 0,153 0,139 0,127 0,117 0,108| 0,078 0,076 0,074 0,073 0,072

Skewness of portfolio logreturn
0 3452 6,751 7,253 7,816 8591| 2,302 2976 3197 3294 3,387
5 3455 4,749 6,257 7,892 9,657 2290 2415 2541 2669 2,803
10 3421 4,047 4,761 5587 6560 2,246 2,294 2347 2407 2475
15 3,316 3,648 4,016 4,447 4,983 2,197 2,219 2247 2282 2326
20 3,277 3527 3823 4196 4,690 2,114 2,113 2,118 2,129 2,146
25 3,181 3,346 3540 3,781 4,087| 2,024 2,010 2,001 1,99 1,996
30 3079 3192 3333 3514 3751 1,885 1,856 1,830 1,808 1,790
35 2911 2967 3,042 3143 3,279| 1,765 1,729 1696 1,666 1,639
40 2805 2,832 2872 2931 3012| 1626 1585 1547 1511 1,479

Kurtosis of portfolio logreturn
0 21,29 85,23 98,960 114,80 137,70| 1155 18,61 2153 2293 24,27
5 21,43 41,25 75,229 123,80 186,20| 11,44 1254 13,71 1497 16,36
10 21,03 29,33 40,905 56,95 7931| 11,11 1152 11,97 1249 1311
15 19,82 2387 28995 3584 4566 10,79 1100 11,25 1156 11,95
20 1964 22,77 26912 32,71 4142| 1018 10,19 10,23 10,31 1043
25 18,66 20,61 23,063 26,25 3058 9623 9541 9481 9445 9,436
30 17,67 1897 20,625 22,79 2573| 8614 8412 8228 8064 7918
35 16,13 16,77 17,584 1865 20,07| 7,929 7,702 7,489 7,290 7,105
40 1534 1562 15999 1650 17,17| 7,210 6,982 6,766 6561 6,366
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We note that, when there is no transaction cost, the expected return is decreasing
w.r.t. the tolerance and increasing w.r.t. the multiple. For a transaction cost rate equal to
or higher than 1%, it isthe converse. The skewness of logreturn is always positive and the
values of the kurtosis show that the logreturn distribution is not Gaussian (they are all
higher than 3).

In Table 1, both skewness and kurtosis are increasing w.r.t. the multiple and are
decreasing w.r.t. tolerance. We compare now the returns of both the continuous-time

rebalancing portfolio value v&" (which corresponds tot=0%) and the stochastic-time

rebalancing portfolio value V' . We examine the distribution of theratio v&" / v . Note
that its cdf depends on y and m:

ctr

)= p VT (me)<x
) P{v%,m)‘ }

Figures 1(c,d) show that there exists a stochastic dominance at the first order
between portfolios values V& and V3" (with transaction costs), and also between

TC¥ andTCY'.

Figurel
Portfolio values and transaction costs
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In particular, we search for the quantile at the level (1/2) and the value of
Fy.m)(1). We note that the probability that V" is higher than V" is about 100% and

the range of ratio V& /v§" isin [0.6;1]. This proves that we must introduce portfolio

rebalancing according to the tolerance level. Additionally, the ratio TC$" /TC' of the
cumulative amounts of transaction costs is always higher than 160%. We find also that
TC¥ is smaller than 5% of the initial investment Vo with a probability equal to 92.36%

(see Figure 1 (d)), whereas, for TC$", this probability is equal to 23%. Note that TC$"

can reach 50% of the initial investment V,. We illustrate now in Figure 2 the impact of
the multiple on rebalancing times and durations (pdf denoted by f and cdf denoted by F).

Figure2
Stochastic time and duration probability distributions
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For any fixed tolerance rate 7, the higher the multiple m, the lower the rebalancing
times and durations, since the corridor [A,B] isdecreasing with respect to the multiple m.
Note that the duration associated to the multiple m; stochastically dominates any
duration associated to the multiple m,, as soon as m; < m,. For example, for m;=6, the
probability to rebalance during one week is about 60% whereas, for m,=10, this
probability is about 85%. The duration associated to a tolerance rate t; stochastically

dominates any duration associated to atolerancerate t, , assoonasty > 1, . For example,
forty =10%, the probability to rebalance during one month is about 100% whereas,
fort, =15%, this happens approximately for two months.
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V. CONCLUSION

In this paper, we have examined the CPPI method when portfolio isrebalanced according
to investor’s tolerance with respect to the target multiple. This strategy is used by
practitioners to limit exposure and to reduce global transaction costs. Using various
criteria, we have shown that tolerance to the target multiple must be carefully chosen
according to the transaction cost level, since this latter one penalizes portfolio
performance. We have al so compared this stochastic time rebalancing CPPI strategy with
the standard one (tolerance equal to zero), when transaction costs occur. Clearly, it
dominates the standard strategy. As a by-product, we have provided quasi explicit
formula for cumulative distribution function of rebalancing times.

ENDNOTES

1. For more details about proofs of propositions, see Mkaouar (2009).

2. The functions pu(.), and o(.) satisfy the usual conditions to guarantee the existence,
uniqueness and positivity of the solution of this stochastic differential equation.

3. When the risky asset S has jumps, which are greater than a non positive constant d,
then condition 0 < m < -1/d implies positivity of the cushion. For example, if d is
equal to -10%, then taking m < 10 allows portfolio to be guaranteed.

4. See Prigent (2001b) for results of option pricing, when such kind of times (T,), are
considered.

5. Seealso Geman and Yor (1994).
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